首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   44篇
  国内免费   83篇
化学   1139篇
晶体学   24篇
力学   47篇
数学   2篇
物理学   581篇
  2023年   102篇
  2022年   43篇
  2021年   44篇
  2020年   51篇
  2019年   34篇
  2018年   42篇
  2017年   52篇
  2016年   58篇
  2015年   54篇
  2014年   74篇
  2013年   91篇
  2012年   84篇
  2011年   152篇
  2010年   111篇
  2009年   211篇
  2008年   146篇
  2007年   127篇
  2006年   102篇
  2005年   53篇
  2004年   52篇
  2003年   30篇
  2002年   17篇
  2001年   13篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
排序方式: 共有1793条查询结果,搜索用时 31 毫秒
21.
Nanoscience research aims to produce nanoparticles without adverse effects for medical applications. The pulsed laser ablation (PLA) technique was utilized in this study to synthesize gold nanoparticles (AuNPs) using bovine serum albumin (BSA) in simulated body fluid (SBF) at the fundamental wavelength of the Nd: YAG laser (1064 nm). BSA acted as a stabilizer, reducing and capping agent to produce spherically shaped AuNPs (diameter 3–10 nm). The successful synthesis of AuNPs was confirmed through color changes and UV–vis spectroscopy. The agglomeration and precipitation of AuNPs are attributed to the presence of BSA in the solution, and electrostatic repulsion interactions between BSA and Au nanoclusters. The effect of salt concentration of SBF on BSA stability as well as the interaction of BSA conjugated AuNPs to form complexes was studied using molecular dynamic simulations. Our results show that the stability of AuNPs-BSA conjugates increase with the salt concentration of BSA. Moreover, the synthesized AuNPs exhibit low toxicity and high biocompatibility, supporting their application in drug delivery. Investigation of the cytotoxic effect of the synthesized AuNPs show that normal fibroblast cells (L929) remain intact after treatment whereas a dose-dependent inhibition effect on the growth of cervix cancer cells (HeLa) is observed. In general, this study presents an effective, environmentally-friendly, and facile approach to the synthesis of multifunctional AuNPs using the PLA technique, as a promising efficacious therapeutic treatment of cervical cancer.  相似文献   
22.
The graphene oxide, functionalized with polydopamine (PDA) bio-polymers and molybdate (MO) ions, was incorporated into the epoxy coating. The FT-IR, Raman, UV-visible, XRD, and FE-SEM/EDS analyses were utilized for the GO/PDA/MO nanoparticle characterization. The sequence of inhibitors' release from the nano-hybrid and their effect on the electrochemical behavior of the steel sample was explored by the OCP, polarization, and, EIS analyses in the aquatic saline media. EIS analyses revealed inhibition efficiency of 88% for the sample immersed in the GO/PDA/MO-contained solution after 48 h immersion. The polarization results showed a 91% corrosion mitigation index for the sample submerged in the GO/PDA/MO extract-containing solution after 48 h immersion. An increase of the scratched coating Nyquist diameter, the lower corrosion product, and coating blister formation after exposure to the salt spray chamber, as well as the lower adhesion loss in the pull-off test (26%), revealed that the epoxy coating reinforced with GO/PDA/MO nano-hybrids could mitigate the mild steel corrosion by improving the barrier performance and active corrosion protection (self-healing mechanism) behavior.  相似文献   
23.
The rutile phase Sn0.99-xMnxCr0.01O2 (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by facile chemical co-precipitation method using poly ethylene glycol (PEG) as a capping agent. The samples were characterized by EDAX to confirm the expected stoichiometry. The X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy analyses of these samples showed the formation of impurity free crystals with a single phase rutile type tetragonal crystal structure as that of (P42/mnm) of SnO2. Optical absorption spectra and corresponding Tauc's plots showed a redshift of the absorption edge in SnO2 after being co-doped with Cr and Mn. The samples were examined for its magnetic property using vibrating sample magnetometer which indicated that transition of magnetic signals from ferromagnetic to the paramagnetic nature with inclusion of Mn content in SnO2: Cr host matrix. The observed magnetic behavior is well supported with the bound magnetic polarons (BMPs) model.  相似文献   
24.
采用化学共还原法合成了聚乙烯吡咯烷酮保护的Pt/Cu双金属纳米颗粒(BNPs),并采用紫外可见吸收光谱、透射电子显微镜、高分辨透射电子显微镜等对所合成的Pt/Cu BNPs进行了表征。研究了化学组成对Pt/Cu BNPs催化Na BH4水解制氢性能的影响。结果表明,所制备的Pt/Cu BNPs平均粒径为1.8~2.3nm,其催化活性远高于单金属Pt和Cu NPs的活性,其中Pt90Cu10BNP的催化活性最高,其在30℃的条件下,催化Na BH4制氢的活性可达6570mol-H2·mol-cat-1·h-1,约为相同粒径的Pt单金属NP的1.6倍。密度泛函理论的计算结果表明,Pt/Cu BNPs优异的催化性能可归因于电荷转移效应,Pt原子与Cu原子之间发生的电子转移使得Pt原子带负电而Cu原子带正电,荷电的Pt和Cu原子成为催化反应的活性中心。  相似文献   
25.
Small concentrations (≤5 wt. %) of nanoparticles in polymeric materials can potentially result in improvements in material properties and functionality. However, poor or non-uniform particle dispersion resulting in clustering (agglomeration) in polymer nanocomposites (PNCs) limits the potential for property enhancement. Achieving good dispersion is considered essential for large-scale production and commercialization of PNCs. New and effective measurement techniques capable of quantitatively characterizing particle loading and dispersion would significantly contribute towards understanding and optimizing the material performance of PNCs and, consequently, play a pivotal role in product development. This paper presents the results of a study using a static light scattering technique, optical wavefront correlation (OWC), for discriminating between different particle loadings and levels of dispersion. The technique has been applied to a range of PNCs, including epoxy resins reinforced with nanoclay platelets or silica microspheres, and zinc oxide and lithium aluminate reinforced polypropylene.  相似文献   
26.
Nanotechnology deals with the materials at nanoscale to synthesize nanoparticles. The current study introduced a new green approach for the synthesis of Copper and Nickel hybrid nanoparticles by using Zingiber officinale rhizome extract as a capping and reducing agent. The nanoparticles were physico-chemically characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, Energy-dispersive X-ray spectroscopy, and Scanning electron microscopy. It was revealed by scanning electron micrograph that the Cu-Ni hybrid nanoparticles have spherical geometries with average grain size of 25.12 ± 1.2 nm. Furthermore, biocatalytic and photocatalytic applications of the biosynthesized nanoparticles were assessed. The results of antibacterial assay revealed that Cu-Ni hybrid nanoparticles had an inhibition zones of 28 ± 1.0, 25 ± 0.8, and 25 ± 1.5 mm against P. aeruginosa, E. coli and Proteus vulgaris. Commercially available antibiotics were purchased and coated with Cu-Ni hybrid nanoparticles, it was found that their antimicrobial efficacy was increased twice. To evaluate the antioxidant potential, nanoparticles having a concentration of 200 µg/mL were applied against 2,2-diphenyl-1-picrylhydrazyl free radicals and NPs showed 42.1 ± 0.71 % inhibition. Cu-Ni nanoparticles have shown a dose-dependent cytotoxicity against amastigote and promastigote in anti-leishmanial assay. The synthesized nanoparticles were found biocompatible and safe in nature to be used in vivo, as they showed no significant hemolysis of human red blood cells at their highest concentration. In antidiabetic assay, NPs inhibited alpha-amylase enzyme up to 38.07 ± 0.65 %. An organic crystal violet dye was successfully degraded by the synthesized nanoparticles in photocatalytic assay. Hence, it is concluded that Cu-Ni hybrid nanoparticles can be used both in vitro and in vivo for drug delivery in biomedical research. These nanoparticles can also be used in the remediation of organic dyes as a catalyst.  相似文献   
27.
Studies show that after acidizing operation of oil wells using the alkali/surfactant/polymer (ASP) flooding technology, the produced fluid is emulsified. Since the produced emulsion is stable, it affects the oil–water separation performance. In order to analyze the generation of stable emulsion in the produced fluid after acidizing an oil well, innovative separation experiments were carried out on real oil wells. During the experiments, solid particles in the middle layer of the emulsifying system in the produced fluid after acidizing ASP flooding were extracted and characterized. The generation of the stable emulsifying system in the produced fluid was studied through stability experiments and molecular dynamics simulations. The results showed that the synergistic effect of ferrous sulfide nanoparticles and surfactants was the fundamental reason for the strong emulsifying stability of the produced liquid after acidizing of the ternary composite system. The generation of ferrous sulfide solid particles mainly included two steps. First, sulfate reducing bacteria in injected water by ASP flooding reacted with sulfate in formation water to form hydrogen sulfide. Then, the hydrogen sulfide reacted with iron metal in oil wells and casing of wellbore to form ferrous sulfide particles. It was found that surfactants are adsorbed on the surface of ferrous sulfide nanoparticles. Subsequently, the control ability of surfactant on oil and water phases in the liquid film was enhanced. The performed analyses demonstrate that the adsorption of solid particles to the oil phase was enhanced, while the free motion of molecules in the oil phase at the liquid film position was weakened. The strength of the interfacial film between oil and water was further increased by the synergistic effect of ferrous sulfide nanoparticles and surfactant. The present study is expected to provide a guideline for a better understanding of the efficient treatment of produced fluids in ASP flooding.  相似文献   
28.
In this paper, a novel Zn(II) and Co(II) Schiff base complexes were synthesized by template method via refluxing 2,3-Naphthalenedicarboxaldehyde, Metal(II) chloride (Metal = Zn or Co), and L-phenylalanine. ZnO and Co3O4 nanoparticles were synthesized by thermal decomposition of Zn(II) and Co(II) complexes, respectively. The products were characterized using different instruments such as CHN, Conductivity, FT-IR, XRD, HR-TEM, and UV–Vis spectrophotometer. The experimental results of elemental analysis for Zn(II) and Co(II) complexes, agree with the calculated results, indicating that the Zn(II) and Co(II) complexes have 1:1 ligand/metal ratios. The molar conductance of the Zn(II) and Co(II) complexes, is less than 5 Ω?1cm?1mol?1, confirming the non-electrolytic nature of the synthesized complexes. The average crystallite diameter of the ZnO and Co3O4 samples is 39.64 and 30.38 nm, respectively. The optical energy gap of the ZnO and Co3O4 samples are 2.75 and 3.25 eV, respectively. Methylene blue dye was utilized to examine the photocatalytic properties of the synthesized nanoparticles using UV irradiations in the absence and presence of hydrogen peroxide. The % degradation of the methylene blue dye in the presence of hydrogen peroxide using ZnO and Co3O4 samples after 40 min is 94.55 and 98.98, respectively. Six pathogenic microbes were utilized to examine the antimicrobial properties of the synthesized Schiff base complexes and their nanoparticles: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus species, Aspergillus species, and Candida species. Zn(II) and Co(II) complexes display inhibition towards all the studied microbes. Besides, ZnO and Co3O4 nanoparticles exhibit less inhibition towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus species. Moreover, ZnO and Co3O4 nanoparticles have no activity towards Aspergillus and Candida species.  相似文献   
29.
Tumor penetration is important fo r effectively tumor targeting drug delivery.Recently,many researches are published to overcome the barriers that restrict tumor penetration and improve drug delivery efficiency.In the mini review,we first analyzed the barriers influence the tumor penetration,including tumor microenvironment barriers,nanoparticle properties,and interaction barriers between tumor and nanoparticles.To overcome the barrier,several strategies are developed,including modulating tumor microenvironment,changing particle size,transcytosis enabled tumor penetration,cell penetrating peptide modification and overcoming binding site barrier,which could effectively improve tumor penetration,and finally enhance tumor treatment outcome.  相似文献   
30.
Nanoparticles are small particles sized 1–100 nm, which have a large surface-to-volume ratio, allowing efficient adsorption of drugs, proteins, and other chemical compounds. Consequently, functionalized nanoparticles have potential diagnostic and therapeutic applications. A variety of nanoparticles have been studied, including those constructed from inorganic materials, biopolymers, and lipids. In this review, we focus on recent work targeting the severe acute respiratory syndrome coronavirus 2 virus that causes coronavirus disease (COVID-19). Understanding the interactions between coronavirus-specific proteins (such as the spike protein and its host cell receptor angiotensin-converting enzyme 2) with different nanoparticles paves the way to the development of new therapeutics and diagnostics that are urgently needed for the fight against COVID-19, and indeed for related future viral threats that may emerge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号